Project Address:
dataset in ML/ML_ation/tree
决策树
- 计算复杂度低,中间值缺失不敏感,可理解不相关数据
- 可能过度匹配(过度分类)
- 适用:数值型和标称型
决策树伪代码createbranch
检测数据集中子项是否全部属于一类 if so return class_tag else 寻找数据集最佳划分特征 划分数据集 创建分支节点 对每一个子集,递归调用createbranch 返回分支节点
递归结束条件:所有属性遍历完,或者数据集属于同一分类
香农熵
def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob,2) return shannonEnt
数据及划分与最优选择(熵最小)
def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reduceFeatVec = featVec[:axis] reduceFeatVec.extend(featVec[axis + 1:]) retDataSet.append(reduceFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0])- 1 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet)/float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if infoGain > bestInfoGain: baseInfoGain = infoGain bestFeature = i return bestFeature
所有标签用尽无法确定类标签时: 多数表决决定子叶分类
def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 sortedClassCount = sorted(classCount.iteritems(), key = operator.itemgetter(1), reverse = True) return sortedClassCount[0][0]
创建树
def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): return classList[0] if len(dataSet[0]) == 1: return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatureLabel = labels[bestFeat] myTree = {bestFeatureLabel:{}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] myTree[bestFeatureLabel][value] = createTree(splitDataSet(dataSet, bestFeat,value), subLabels) return myTree
测试
def classify(inputTree,featLabels,testVec): firstStr = inputTree.keys()[0] secondDict = inputTree[firstStr] featIndex = featLabels.index(firstStr) for key in secondDict.keys(): if testVec[featIndex] == key: if type(secondDict[key]).__name__=='dict': classLabel = classify(secondDict[key],featLabels,testVec) else: classLabel = secondDict[key] return classLabel
>>> import trees>>> myDat,labels=trees.createDataSet()>>> labels['no surfacing', 'flippers']>>> myTree=treePlotter.retrieveTree (0)>>> myTree{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}>>> trees.classify(myTree,labels,[1,0])'no'>>> trees.classify(myTree,labels,[1,1])'yes'
存储与重载
def storeTree(inputTree, filename): import pickle fw = open(filename, 'w') pickle.dump(inputTree,fw) fw.close()def grabTree(filename): import pickle fr = open(filename) return pickle.load(fr)
test
#!/usr/bin/pythonimport treesmyDat,labels = trees.createDataSet()myTree = trees.createTree(myDat, labels)trees.storeTree(myTree,'classifierStorage.txt')print(trees.grabTree('classifierStorage.txt'))
图形化显示树结构
#!/usr/bin/pythonimport matplotlib.pyplot as plt decisionNode = dict(boxstyle = "sawtooth", fc = "0.8")leafNode = dict(boxstyle = "round4", fc = "0.8")arrow_args = dict(arrowstyle = "<-")def plotNode(nodeTxt, centerPt, parentPt, nodeType): createPlot.ax1.annotate(nodeTxt, xy = parentPt, xycoords = "axes fraction", xytext = centerPt, textcoords = "axes fraction", va = "center", ha = "center", bbox = nodeType, arrowprops = arrow_args)
创建节点
def createPlot(): fig = plt.figure(1, facecolor = "white") fig.clf() createPlot.ax1 = plt.subplot(111, frameon = False) plotNode("a decision node",(0.5, 0.1), (0.1, 0.5), decisionNode) plotNode("a leaf node",(0.8, 0.1), (0.3, 0.8), leafNode) plt.show()
python command line run command as this
import treeplottertreePlotter.createPlot()
- result like this
def getNumLeafs(myTree): numLeafs = 0 firstStr = myTree.keys()[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__ == 'dict': numLeafs += getNumleafs(secondDict[key]) else: numLeafs +=1 return numLeafsdef getTreeDepth(myTree): maxDepth = 0 firstStr = myTree.keys()[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__ == 'dict': thisDepth = 1+ getTreeDepth(secondDict[key]) else: thisDepth = 1 if thisDepth > maxDepth: maxDepth = thisDepth return maxDepthdef retrieveTree(i): listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': \ {0: 'no', 1: 'yes'}}}}, {'no surfacing': {0: 'no', 1: {'flippers': \ {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}} ] return listOfTrees[i]def plotMidText(cntrPt, parentPt, txtString): xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0] yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1] createPlot.ax1.text(xMid, yMid, txtString) def plotTree(myTree, parentPt, nodeTxt): numLeafs = getNumLeafs(myTree) depth = getTreeDepth(myTree) firstStr = myTree.keys()[0] cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW,\ plotTree.yOff) plotMidText(cntrPt, parentPt, nodeTxt) plotNode(firstStr, cntrPt, parentPt, decisionNode) secondDict = myTree[firstStr] plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': plotTree(secondDict[key],cntrPt,str(key)) else: plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode) plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD def createPlot(inTree): fig = plt.figure(1, facecolor='white') fig.clf() axprops = dict(xticks=[], yticks=[]) createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) plotTree.totalW = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0; plotTree(inTree, (0.5,1.0), '') plt.show()
扩展测试 lens.py
Project Address: ` https://github.com/TheOneAC/ML.git` dataset: `lens.txt in ML/ML_ation/tree`
#!/usr/bin/pythonimport treesimport treePlotterfr = open("lenses.txt")lenses = [inst.strip().split('\t') for inst in fr.readlines()]lensesLabels=['age', 'prescript', 'astigmatic', 'tearRate']lensesTree = trees.createTree(lenses,lensesLabels)print(lensesTree)treePlotter.createPlot(lensesTree)